MATRIX_TO_EULER (189)


MATRIX_TO_EULER (189)

ID                          189

 

 

Application:

PLC

SIM

 

Group: DATA CONVERSION

 

Short description:

Function that calculates the Euler angles from the elements of the transformation matrix.

 

Inputs (9):

no.

type

impulse

mark

notes

1

R

no

PR11 [1,1] element of the transformation matrix
2 R no PR12 [1,2] element of the transformation matrix
3 R no PR13 [1,3] element of the transformation matrix
4 R no PR21  [2,1] element of the transformation matrix
5 R no PR22 [2,2] element of the transformation matrix
6 R no PR23 [2,3] element of the transformation matrix
7 R no PR31  [3,1] element of the transformation matrix
8 R no PR32 [3,2] element of the transformation matrix
9 R no PR33 [3,3] element of the transformation matrix

 

Outputs (4):

no.

type

impulse

mark

notes

1

R

no

rot_x

First Euler angle [Rad] - X axis orientation 
2 R no rot_y Second Euler angle [Rad] - Y axis orientation
3 R no rot_z Third Euler angle [Rad] - Z axis orientation
4 B no error Ambiguous solution

 

Settings: none

 

Operation:

MATRIX_TO_EULER function calculates the Euler angles from the elements of the transformation matrix.                                                                                                                          

Input matrix:
              [ PR11    PR12    PR13 ]
   Wej =  [ PR21    PR22    PR23 ]
              [ PR31    PR32    PR33 ]


Euler angles are obtained by using the function atan2:

when Ry = -PI/2:PI/2
Rz = atan2((PR21),(PR11))
Ry = atan2((-PR31),(sqrt((PR32*PR32)+(PR33*PR33))))
Rx =  atan2((PR32),(PR33))

 

when Ry = PI/2:3PI/2
Rz = atan2((-PR21),(-PR11))
Ry = atan2((-PR31),(-sqrt((PR32*PR32)+(PR33*PR33))))
Rx =  atan2((-PR32),(-PR33))

 

Error handling (error with an ambiguous position):

When Ry is -PI / 2 or PI / 2, the robot is in an ambiguous position. 0 values are recorded at the Rz, Ry and Rx outputs.


More theorethical information: Wikipedia

R registers and M markers used: none